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Abstract. The smoothing method is used to find the first two moments, i.¢., the mean
and the two-point two-time correlation function, of the field scattered by a rough surface.
The results are expressed in terms of a reflection coefficient and a differential scattering

coefficient. They are compared with those found by several other methods.
k.\

1. Introduction

An acoustic wave which hits a rough surface produces a mean or coherent reflected field and a fluctuating
or partially coherent scattered field. These fields can be calculated by the regular perturbation or Born
expansion method, see ¢.g., (1], but the results diverge at grazing incidence. However they can be modified
or renormalized to remain finite [i] by writing them in forms suggested by Twersky’s self-consistent field
method (2, 3]. We shall show that these same non-divergent results can be obtained directly by a different
perturbation procedure, known as the smoothing method.

The smoothing method has been used to find the coherent field for certain kinds of rough surfaces by
Wenzel [4], DeSanto, and others. (See DeSanto's review [5].) Here we apply it to more kinds of rough
surfaces, which can be either moving or at rest, and we calculate both the coherent field and the two-point
two-time correlation function of the field. Then we show that the results are the same as the renormal-
ized ones in (1], which were compared there with Twersky’s (2, 3] results for embossed surfaces. Thus the
present calculation elucidates the relationship among the resuits of the regular perturbation or Born expan-
sion method, the renormalized regular perturbation method, Twersky's self-consistent field method and the
smoothing method.
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3. The Integral Equation for the Scattered Field

Suppose that a wave with the acoustic velocity potential y(z,y, z,¢) is incident upon a rough surface §, and
that it produces a scattered wave with potential p(z,y, z,t). Both potentials must satisfy the wave equation
with constant sound speed ¢ above the surface S, and © must be outgoing. In addition ¢ + © must satisfy
on S a boundary condition which depends upon the nature of the surface. We shall consider the following

four boundary conditions:
e (¥ +9)=0 amns=¢h (1a)
cu .
o
<> {8: — €hyd, ~ €h,3y) (¥ + ) =¢h, onz=¢h (')
;,:;’ (ehdy + ¢d,)(¥+90) =0 onz=0 (1¢)
| .
ey (0: + €ch3,)(¥+¢) =0 onsz=0 {1d)
: In all cases ¢ is a small parameter and h(z,y,t) is a given function. Case a represents a soft surface, 3 = ¢h, .
=) on which the pressure vanishes; case b represents a hard surface 5 = £h on which the acoustic normal velocity
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equals the surface normal velocity, case ¢ represents a flat surface z = 0 with the admittance ¢h, and case d
represents a flat surface z = 0 with the impedance ¢h. In case b we shall not consider the acoustic radiation
produced by the motion of the surface, so we shall omit the term ch; on the right side of (15').

Before proceeding we shall simplify (1a’) and the homogeneous form of (1b') by expanding ¥ + p in a
Taylor series about z = Q to obtain

e2n?

5 31+ 0(e3))A (v +9) =0 onz=0 (1a)

[1+ehd, +

2
(s + €(hD? — hy3s — h,3,) + e’(l'z-az — hhyd,0, - hhy3,0:) + O[N] +9) =0 omz=0  (18)

Now all four boundary conditions (1a)~(1d) apply ou the plane z = 0. This makes it convenient to introduce
the Fourier tranaform pairs:

Fo) = (7)™ / f(p)ei"**dp 2)

flp) = / F(a)e'™*da @)

Here p = (z,y.t) and s = (a, 8, w) are three component vectors in physical space-time and in wavenumber-
frequency space, respectively. We shall always use the corresponding capital letter to denote the transform
of a function denoted by a small letter.

We now apply the transform (2) to the wave equation for © and find that $(s, z) satisfies the ordinary
differential equation ®,, + k?(2)® = 0 where k?{s) = w3/c? — a? - #2. Since & must be outgoing at z = +co
when k is real, and must vanish there when £ is imaginary, # must be of the form

(s, 3) = A,(a)e" M) (4)
Here k(s) is defined by
k(s) = (w/c)1 - (o + B*)(w/c) 2} |, (w/e)*2a’+p? )

k(s) = —ila® + 82 - (w/e))} , (w/e)* <a®+p?

The scattered amplitude 4,(s) is unknown, and is to be found. To find it we first write ¥(s, z), the transform
of the incident field, as
¥(s, 5) = Ay(s)e™() ()

The incident amplitude A;(s) is assumed to be knowu. We now apply the transform (2) to each of the
boundary conditions (1a) - (1d) and use (4) and (6) in the resulting equations. Ir each case we obtain an
integral equation for A,(s) of the form
K(-€)A, = :kK.(t)A‘ (M
The linear operator K(¢) in (7), which depends upon ¢, can be written as
K(e) =1+ ¢K, + ' Kq + O(c®) (8)

Here [ is the identity while K, and K3 are integral operators of the forms

KiA= / Hs - o')m(s, o")A(s')ds’ ®)
KiA=-} / / His ~ )H(s - .")[‘%"]h*(.")A(.")a."a.' (10a)
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KA = -21- // H(a - d)H(s' - l")-—kk(;')) {k’(a") - 2{(w"/c)? - a'a” - ﬂ'ﬂ"]}A(a")dc"da' (100)
We recall that H is the transform of h, while m and the choice of sign in (7) are given in Table I. For the

admittance and impedance boundary conditions, cases ¢ and d, the operator K3 and the O(e?) term in (8)
are both zero.

(a) (b) {c) {d)
Parameter Soft Hard Admittance  Impedance
+ - + + - .
i\ 3 :
m(s,s’) iw'k(s)/w  sk71(s) [(-“’;) ~aa' - ﬂﬂ’] w'[ck(s) w/ck(s')
1

Table 1. The sign and the function m(s,s’).

3. Application of the Smoothing Method -

Let h and A; be random functions statistically independent of one another. Then the solution A, of the

integral equation (7) is random also. To calculate its first two moments we shall use the smoothing method,

first used to treat waves in random media and similar problems by Bourret [6] and Keller {7]. It is convenient

to write (f) to denote the mean value with respect to h of any random fanction f that depends upon A, '
and f' = [ — (/) to denote the corresponding fluctuating part of f. Then {f') = 0. If f depends upon both

h and A,, then (f) still depends upon A;, so it is still random. We denote the average of / with respect to '
both A and A; by (/).

We begia by asing (8) in (7) to get

(I~ eKy + €2 K3)A, = £(I + Ky + 2 K3)A; + O(c®) (11)
Now we take the mean value of (11) with respect to h to obtain l
(J - e(K1) + €3 K2))(AL) ~ (KL AL) + 3 (KL ALY = 2(] + e(K,) + e (K3)) Ai + O(e®) (12)

Next we subtract (12) from (11), keeping terms through Ofe), to get
A, - e(K}(AL) + (K1)A, - KL A, + (K[ A})) = 2eK( A + O(c”) ' (13)
Upon solving (13) for A’ up to O(e), we find ‘
A, = eK\{A,) £ KA + O(e?) (14)
Finally we use (14) for A’ in (12) and obtain ,
(7 - e(K1) - (KK + e (Ka)l(Ad) = %1 + e(Ky) + (K K) + €2 (KQ)| Ai + O(e?) (18)
This is the desired smoothed or non-random equation for (A,), and (14) is an expression for A’, in terms of

{A,). The operators (K;) and (K3) in (15) are given respectively by (9) with H replaced by (H) and by
(10) with HH replaced by (HH). The operator (K| K1) is given by !

(K KA = [ (H'(s - )H'(s — o)) m(s, #)m(s’, ") A(s")de'ds" (16) 1
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The integral equation (15) simplifies considerably when the function h is statistically sccond order
stationary. Then the mean of h is a constant h,, i.e., (h) = h,, and the two-point two-time correlation
function of h depends only upon the difference between its arguments, i.e. (h(p + p')a(p')) = r(p) + h2.
Consequently the first two moments of the transform H are given by (H(s)) = h,5(s) and (H(s)H(s")) =
R(3)6(s + s') + h35(s)6(s"). Here R(s), the spectral power density of h(p). is the Fourier transform of the
auto-correlation function r(p), so it is a positive, even, real-valued function of s. When the expressions for
(H) and (H(s)H(s')) are used in the average operators, they simplify to,

(K1)A = hom(s,a)A(9) (17)
(KiK})A = [/ R(a — &'Ym(s,s')m(s’, a)da']A(a) (18)
(K3)A = =2k} (a)[V + h2]A(o) (19a, b)

Here V = [ R(s)ds is the variance of h. Thus for stationary processes, these three operators are multi-
plicative, and the smoothed equation (15) is just a linear algebraic equation for (4,). In cases ¢ and d,
(Ka) =0

4. Solution for the Mean Amplitude
In general the solution of (15) for {A,) can be written

(A,) = MA; + O(e®) (20)

The linear operator M, which occurs in (20), is not random, and must be found by solving the integral
equation (15). However, when h(p) is second order stationary, the solution of (15) is

(Au(9)) = C(8) As(a) + O(e*) ' (21)
Here C(s) is just a scalar function which we call the reflection coefficient. It is given by
Cle) = £[1 + e(Ky) + (K1 K}) + €2 (Ka))/[1 ~ (K1) — e} (K} K]) + €2 (K3)] + O(e*) (22)

= £{1+ Q(a))/[1 - Q(a)) + O(e*)
The sign is shown in Table I and @(s) is defined by '

2 -t
Q(s) = [eh.m(a,n) +e? / R(a ~ s')m(s, a')m (s, o’)da'] [l - -i-k’(a) v+ h:)] (23a,8)
Q(s) = ehom(s,0) + ¢? / R(s — o')m(s,s')m(s, s')ds’ {23¢,d)
. When (21) is averaged with respect to A, it yielda . d
{(4s(2))) = Cla){4:) + O(e*) (24)
Here the average of A, pertains to both h and A;, while {A;) means the average of A,, which is independent
of h. ¢
The second form of C(s) in (22) is obtained from the first form by dividing numerator and denominator
by 1+ ¢2(K,), following Twersky (8. If the denominator in (23a,b) is replaced by unity, which corresponds
to an O(e?) change in C(a), the resulting C(s) is identical with equation (42) of (1], which is the renormalised )
Born reflection coefficient. ‘
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5. The Second Moment of the Fleld

Let us consider the total acoustic potential ¥ + p at two points with separation z = (z.y, z,t) and midpoint
X = (X,Y,Z,T). The second moment or two-point two-time correlation function of the acoustic potential
at these points is ¥(z. X) = (({¥ + ¢|(X + §){¥ + ©](X - §))). We denote its Fourier transform [(s,q, 2, Z)
where s = (@, 3,w) corresponds to (z,y,t) and ¢ = (a,b, w) corresponds to (X,Y,T), and we write it as

D(0,0,2:2) = (¥ + 9] + 0,2+ )W +9)(F - 0.2 - 7)) (25)

By using (4) and (6) for & and ¥ we can express [ in terms of the four correlations Bj;(s,q) =

((A(S + 9)Ailf - 2))), Bao = {(AA)), Bai = {(A,As)) and By (s,4) = ((Au(§ + ) Au(1 — 0))). See [1].
Each of the four correlations above can be evaluated by writing A, = (A,) + A, with (A,) given by (20)

and A, given by (14). In particular the auto-correlation of the scattercd amplitude A, becomes

Bu(9,9) = {(Au(§ + ) (AL(F — o)) + (445 + ) AL(F ~ ) + Oe?) (26)

Buulo,q) = (MAJ(S + ) MAJ(] - ) + (K11 2 DAL + KM £ DAN(S - o)) +O(e?)
When h is second order stationary, M becomes multiplication by C(s), and (26) simplifies to

o)m(f+s, %+ 4 )m(f -0 §-4)Bii(s',q)

-Q(3 + #)I - QCF - ] 4+ OLe)

Bioi(s,q) = C(%H)C(%-a)ﬂia(a,qhu’/ R(s -

(27)

The auto-correlation B,, simplifies even more when the incident field ¥(z,y, z,t) is statistically second
order stationary in z,y and ¢t. Then Bj; is just

Bii(s,9) = L(e)é(q) (28)
where I;(s) is the intensity of the incident ﬁdd. With (28) used in it, (27) becomes
B..(s,q) = L(2)6(q) + O(e) (29)

The function I,(s) in (29), which is the intensity of the outgoing field in the direction s, is defined by
L(s) = ICEIPLe) + 6G)] [ ote, )1’ + Oe%) (s0)

The coefficient o(s,4') in (30) can be identified as the differential acattering coefficient of the surface. It is
defined

” 4c2k? (o) R (s — #')imP (s, #')|
it~ Qs

With the denominator in (23a,b) replaced by unity, this is exactly the result for o given in equation (44) of
[t], and called there the renormalized Born approximation,

o(e,9') = (31)

6. Conclusion

By using the smoothing method, we have calculated the first two moments of the field produced when a
possibly random incident field hits a random slightly rough surface. The first moment of the field, called the
coherent field, consists of an incident and a reflected field. The reflected field is determined by a reflection
coefficient C(s), which depends upon the first two moments of the surface roughness h. The second moment
of the field involves a differential scattering coeflicient o (s, s’) which also depends upon the second moment
of A

———— e e




Our results for C(s) and o(s.s’) are the same as those we obtained before [1] by renormalizing the
divergent results given by the Born approximation. That renormalization was achieved by writing C and o
in the forms obtained by Twersky [2,3]. We also showed in [1] that for an embosscd plane, our results are the
same as his except for one difference. We had the second Born approximation to the differential scattering
amplitude of a single boss instead of the exact amplitude which occurs in his theory. This saine comparison
applys to the results of the smoothing method, as used here.

We conclude that three different methods yield the same results for the C and o of an embossed
plane, provided that each boss is small enough, with a small enough slope. so that its differential scattering
amplitude is well approximated by its second Born approximation. The thrce methods are Twersky's method,
the renormalized Born approximation and the smoothing mecthod as used here. When the bosses or their
slopes are not small enough, Twersky's results are better than the other two. On the other hand, if the
surface is not an embossed plane, Twersky's method does not apply but the other two methods do.
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